Multidimensional Chebyshev Systems - just a definition
نویسنده
چکیده
We provide a definition of Multidimensional Chebyshev Systems of order N which is satisfied by the solutions of a wide class of elliptic equations of order 2N . This definition generalizes a very large class of Extended Complete Chebyshev systems in the one-dimensional case. This is the first of a series of papers in this area, which solves the longstanding problem of finding a satisfactory multidimensional generalization of the classical Chebyshev systems introduced already by A. Markov more than hundered years ago. 1 History of Chebyshev systems 1.1 Developments in the Moment problem by A. Markov and M. Krein It was namely in the Moment problem where the Chebyshev systems appeared for the first time on the big stage, and provided a very natural and beautiful generalizations of the results of Gauss, Jacobi, Chebyshev, Stieltjes and Markov, and others. The classical Moment problem is defined as follows: Find a non-negative measure dμ such that
منابع مشابه
Algebraic solutions to multidimensional minimax location problems with Chebyshev distance
Multidimensional minimax single facility location problems with Chebyshev distance are examined within the framework of idempotent algebra. A new algebraic solution based on an extremal property of the eigenvalues of irreducible matrices is given. The solution reduces both unconstrained and constrained location problems to evaluation of the eigenvalue and eigenvectors of an appropriate matrix. ...
متن کاملA New Algebraic Solution to Multidimensional Minimax Location Problems with Chebyshev Distance
Both unconstrained and constrained minimax single facility location problems are considered in multidimensional space with Chebyshev distance. A new solution approach is proposed within the framework of idempotent algebra to reduce the problems to solving linear vector equations and minimizing functionals defined on some idempotent semimodule. The approach offers a solution in a closed form tha...
متن کاملAn Algebraic Approach to Multidimensional Minimax Location Problems with Chebyshev Distance
Minimax single facility location problems in multidimensional space with Chebyshev distance are examined within the framework of idempotent algebra. The aim of the study is twofold: first, to give a new algebraic solution to the location problems, and second, to extend the area of application of idempotent algebra. A new algebraic approach based on investigation of extremal properties of eigenv...
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملOn an Hypercomplex Generalization of Gould-Hopper and Related Chebyshev Polynomials
An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.
متن کامل